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A layer of volatile viscous liquid drains down a uniformly heated inclined plate. 
Long-wave instabilities of the uniform film are studied by deriving an evolution 
equation for two-dimensional disturbances. This equation incorporates viscosity, 
gravity, surface tension, thermocapillarity , and evaporation effects. The linear 
theory derived from this describes the competition among the instabilities. Numerical 
solution of the evolution equation describes the finite-amplitude behaviour that 
determines the propensity for dryout of the film. Among the phenomena that appear 
are the tendency to wave breaking, the creation of secondary structures, and the pre- 
emption of dryout by mean flow. 

1. Introduction 
A liquid layer flowing down an inclined plane is susceptible to long surface-wave 

instabilities. If the plate is heated, thermocapillary and/or evaporative instabilities 
may occur, resulting in the dryout of portions of the layer. The present work is 
devoted to determining the nature of the competitive instabilities, the evolution of 
the film, and the tendency toward dryout. To this end, a strongly nonlinear evolution 
equation is derived for two-dimensional disturbances. From this equation the linear 
stability of the uniform layer is analysed, and the nonlinear evolution of disturbances 
is examined using numerical simulations. 

Yih (1955) and Benjamin (1957) first studied the linear theory for the isothermal 
falling film. Yih (1963) formulated the problem in terms of long-wave asymptotics 
and thus determined the critical Reynolds number above which the instability would 
occur. Benney (1966) extended the theory into the nonlinear regime by deriving a 
nonlinear evolution equation. There have been a number of extensions of this work 
as discussed by Atherton & Homsy (1976) and Lin & Wang (1985). 

Thermocapillarity has been incorporated into the falling film by Lin (1974), 
Sreenivasan & Lin (1978), and Kelly, Davis & Goussis (1986). They considered a 
heated incline and examined the interaction of the two modes of instability, viz. 
hydrodynamic (or surface-wave) and thermocapillary instability. Kelly et al. 
considered the linear theory, applied the long-wave approximation with arbitrary 
angle of inclination, and showed that thermocapillarity causes complete destabil- 
ization of the film for angles of inclination well below 90'. They also noticed the 
existence of a stability window ; the stable uniform layer can be destabilized by either 
raising or lowering the Reynolds number. In the present study it will be shown that 
this phenomenon is caused by the stabilizing effect of hydrostatic pressure, and that 
an analogous phenomenon can occur for evaporative instability as well. 
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When the liquid is volatile, another mode of instability is present owing to vapour 
recoil. This effect was studied by Bankoff (1971), Spindler, Solesio & Delhaye (1978), 
Spindler (1982), and many others, including most recently Burelbach, Bankoff & 
Davis (1988), who considered an evaporating layer with heat transfer, but without 
gravitational effects. They derived the one-sided model of evaporation, where the 
dynamics of the vapour are decoupled from those of the liquid. Using long-wave 
theory, they obtained an evolution equation for the static layer, which describes the 
effects of mass loss (or gain for condensing film), surface tension, van der Waals 
attractions, vapour recoil, and thermocapillarity . They then focused on the 
development of dryout, and studied the interaction of the effect of various 
instabilities on the film rupture. 

The present study extends the work of Burelbach et al. (1988) to include the effects 
of gravity-driven flow and hydrostatic pressure. In many practical situations, the 
plate is not horizontal. The flow is driven along the plate by the tangential 
component of gravity, which in turn changes the heat transfer, and thus the rupture 
instabilities. When a layer flows downwards, it is subject to surface-wave instability, 
which can cause steepening and overturning of the liquid-gas interface. Thermo- 
capillary instability acts strongly on surface depressions and draws them toward the 
heated plate. As the local thickness of the layer decreases, evaporation becomes 
important, and evaporative instability (owing to vapour recoil) causes the wave 
trough to thin, after which long-range molecular forces (van der Waals attractions) 
may take over, and cause the rupture almost instantaneously. Save for the last stage, 
this sequence of events will be studied herein. 

In $2, the flow configuration is explained and the governing system of equations 
are obtained. In  $3, we apply the long-wave approximation and derive an evolution 
equation for the layer thickness. The equation contains all the hydrodynamic, 
thermocapillary , and evaporative effects mentioned above. Van der Waals 
attractions are not considered here. In $4, two basic states are discussed. One is 
spatially uniform and time-dependent. The other is steady and develops in space. A 
linear stability analysis for the time-dependent, spatially uniform, basic state is 
performed in $5,  and the nonlinear evolution of various instabilities is examined in 
$6 using a pseudo-spectral method. We conclude in $7 by summarizing the results. 

2. Formulation 
We consider a two-dimensional Newtonian liquid of constant density p, viscosity 

p, and thermal conductivity k, driven by gravity down an inclined plate of angle / 
to the horizontal, as shown in figure 1. The liquid layer of mean thickness do is 
bounded above by a free surface and is laterally unbounded. The plate has a fixed 
constant temperature T', and the temperature TF of the liquid on the free surface is 
controlled by losses to the passive gas above. The liquid is volatile, and thus the 
liquid particles change phase to vapour at the free surface. The surface tension 
depends on temperature, so that thermocapillary effects are present. 

We use a non-dimensional Cartesian coordinate system ( x , z )  with origin on the 
plate, x directed down the incline, and z normal to the plate increasing into the 
liquid; the coordinates are scaled by do. Then, if we use a viscous timescale d i / v ,  
where v = p/p, the Navier-Stokes equations can be written as 

ut -k uu, + wu, = -pz  + u,, + u, + G sin B, 
w,, -I- UW, +WW, = - p ,  -I- w,, -k w,, - G C O S ~ ,  

(2.1) 

(2.2) 
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T. Vapour 

FIGURE 1. The physical configuration of a thin layer flowing down a heated inclined plane. 

where u and w are the equation components in the x- and z-directions, respectively, 
and p is the pressure. Here, Gsinp is the Reynolds number, where C is defined as 

(2.3) 

g is the gravitational acceleration, and &d,2sinp/v is the average velocity of the 
falling film. The continuity equation is 

u2+wz = 0 ,  
and the energy equation is 

P(T, + uT, + wT,) = T,, + qZ. 
Here, P is the Prandtl number 

P = V / K ,  

where K is the thermal diffusivity. The non-dimensional temperature T is defined as 

where TD is the dimensional temperature and is the saturation temperature. 
The surface tension is assumed to decrease linearly with the temperature: 

where c0 is the mean surface tension at  the saturation temperature and 
y ( = - da/dT) is positive for most common liquids. 

For evaporation, we adopt the one-sided model of Burelbach et al. (1988), which 
assumes that the density, viscosity, and thermal conductivity of the vapour layer 
above the free surface are negligible compared to those of the liquid layer, except 
when multiplied by the (large) vapour velocity. It also uses a linearized version of the 
constitutive equation of Palmer (1976) to relate the mass flux from the free surface 
to the local temperature TF. For a detailed derivation of the model and references the 
reader should refer to Burelbach et al. (1988). 

With the evaporation model introduced, the normal-stress condition on the free 
surface at z = h is 

-'az P / D  +p-2  [u,(h: - 1) - h,(u, + w2) ] /N2  = - 35 (1 - CT) hZz/N8, (2.8) 
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where h(z ,  t )  is the local thickness of the layer and N = (1 +hz)i. The evaporation 
number 

where AT = TH - Ts and LD is the latent heat, measures the rate of evaporation. The 
parameter D relates the vapour density pv to the liquid density, 

D = $‘/p, (2.10) 

and is usually very small. The non-dimensional mass flux J ( z ,  t )  is scaled by its value 
k AT/do LD for a constant flat film. The non-dimensional mean surface tension is 

and the capillary number is 

(2.11) 

(2.12) 

The terms in (2.8) represent, respectively, the vapour recoil, the pressure, viscous 
normal-stress jump, and the capillary pressure, which incorporates the temperature- 
dependent surface tension. 

The shear-stress condition on the free surface is unaffected by evaporation, and is 
given by 

(2.13) 

where M is the Marangoni number, 

(u, + w,) (1 -h i )  - 4 ~ ,  h, = - 2NM (T, + h, T,)/P, 

The energy balance on the free surface gives 

where L is the non-dimensional latent heat defined as 

(2.14) 

(2.15) 

(2.16) 

As described by Burelbach et al. (1988), the energy-balance condition (2.15) states 
that the heat conducted across the surface is used to vaporize the liquid particles and 
impart kinetic energy to the vapour particles. 

The linear constitutive relationship on the free surface is written as 

K J  = T .  (2.17) 
The parameter K is defined as 

K =  (2.18) 

where R,, Nw, and a, respectively, are the universal gas constant, the molecular 
weight, and the accommodation constant (see Palmer 1976). It measures the degree 
of non-equilibrium on the free surface. K = 0 represents the case of a constant free- 
surface temperature, TF = T,, while K +  co gives the zero-evaporation limit, J = 0 .  
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The last boundary condition on the free surface is the kinematic condition. Since 
the particles on the free surface are evaporating, the kinematic condition for a 
material surface is modified by mass loss: 

w - hLt - uh, 
N '  

EJ = (2.19) 

If one sets J = 0, one obtains the kinematic boundary condition for a material 
surface. 

On the heated plate, we assume no penetration and no slip and impose a constant- 
temperature condition. Therefore, the boundary condition at  z = 0 are 

u=w=T=O.  (2.20) 

3. Long-wave theory 
In many practical situations, interfacial instabilities are locally generated and 

hence do not scale on layer thicknesses; the waves are long (see Lin & Wang 1985). 
Therefore, we focus our interest on flows with a characteristic length in the x- 
direction, I , ,  much larger than the thickness of the layer, where I ,  typically is 
proportional to the disturbance wavelength. We then follow Benney 's  ( 1966) 
expansion for the small wavenumber s = do/Zc. 

We rescale the system (2.1)-(2.20) using a lubrication-type approximation by 
introducing 

f = € x ,  c=z, 7 = s t .  (3.1) 
For an isothermal falling film it is well known that the terms that cause the 

surface-wave instability appear in the second approximation when the Reynolds 
number is O(1) (see e.g. Atherton & Homsy 1976). In  the present study we scale the 
parameters such that the thermal instabilities also appear at the second order and 
these compete with each other. While the other parameters remain 0(1), we set 

(3.2) 
where the barred quantities are O(1). Burelbach et al. (1988) tabulated numerical 
values of these parameters for thin layers of water and of ethanol, which suggest that 
the scales taken in (3.2) can be realistic. The scales (3.2) make both E2/D (vapour 
recoil) and KM/P (thermocapillarity) of O( 1) and thus they appear in the evolution 
equation at the second order. 

(E ,D ,  X) = (d, s2D, C2S), 

The dependent variables are expanded for small s; 

where h = O(1). 

u = uO+sul+ ..., 
w = €(W,+€W1+ ...), 
p =p,+€p,+ ..., 
T = %+ST,+ . . . ,  
J = J,+sJ,+. . . ,  

We then substitute the expansions (3.3)-(3.7) into the rescaled governing equations 
and obtain the solutions for the dependent variables. We display some of the results 
for future reference. The velocity component in the 2-direction is 
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where + 3A9h665. 
E2 h, 
D (h+K)' 

@ = 3 -  

It shows that the local volumetric flow rate accurate up to the second-order depends 
on h and its derivatives in addition to the parameters. The velocity component in the 
x-direction, evaluated on the free surface, is 

w(& h, 7 )  = -s@h2h6sin/3+s2 Gh2(ihh,+;hi) cos/3-h2(ih@6+~hS@) { 
+Gh3(&hh,,++hEh,) sin/3+&G2h5(13hi+ 3hh,) sin2p 

The leading-order pressure, 

3E2 1 
2 D (h+K)2 

p ,  = G(h-&J ~0~/3+----3Rh65, (3.10) 

is composed of hydrostatic pressure, vapour recoil, and capillary effects. The 
temperature field and the evaporative mass flux are, respectively, 

(3.11) 

and 
3 1 

J = --@(L) [ihT+$G(llh+5K) hh6sin/3]+O(s2). (3.12) 
h+K h+K 

The heat transfer is purely conductive to the leading order, but is modified by 
second-order unsteady and convective effects. 

The above solutions are substituted into the kinematic condition (2.19), resulting 
in an evolution equation for the film thickness h: 

+ Gh2h6 sin /3 
E 

$+h+X 

- iGh3h6 COB /3 + A9h3h666] 
KM h2h, E2 h3h6 +- 

(h+K)2 D (h+K)3 6 

1 G 
+-(7h- 15K) hh6sin/3 = 0. (3.13) 

-5G h4 h E + s~ - (-) sin p+ ~ E P  (-r [ 
24 h+K h+K 3(h+K) 120 

The terms proportional to E in (3.13) describe the mass loss due to evaporation, while 
the third term describes wave propagation and steepening. The fourth, fifth, and 
sixth terms describe mean shear flow, thermocapillarity, and vapour recoil, 
respectively, and generate instabilities as shown below. The next two terms represent 
hydrostatic effects and mean surface tension. 

In  the isothermal limit (E,  E2/D,KM/P+0), equation (3.13) reduces to the 
evolution equation for falling films obtained by Benney (1966), Krantz & Goren 
(1971), and Atherton 6 Homsy (1976). When G is negative and /3 = 0, it describes 
Rayleigh-Taylor instability in thin viscous films with small Bond number (Yiantsios 
& Higgins 1989). In the zero-gravity limit (G+O), equation (3.13) generalizes the 
equation of Burelbach et al. (1988) for a static evaporating film to unit-order M and 
P. This then includes O(E) effects of convection and evaporation. 
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When E = 0 and E2/D = 0, the equation (3.13) describes the evolution of a non- 
volatile layer with thermocapillarity and gravity. In  this case, the mass flux J = 0, 
and the boundary conditions (2.15) and (2.17) can be combined to give a condition 
for the temperature field on the free surface. The reference temperature T, then can 
be considered as an ambient temperature. Up to the order taken in (3.13), the 
resulting thermal boundary condition is T+KT, = 0 at the free surface, so that the 
parameter K-' is the Biot number and is no longer defined by (2.18). Instead, it 
represents a dimensionless heat transfer coefficient. In the small-Biot-number limit 
(K-l+ 0), the thermocapillary term in (3.13) can be simplified as Ah2h,, where A ( = 
MK-'P-l) is the effective Marangoni number. Then, if we further set /3 = 0, the 
evolution equation (3.13) reduces to that obtained by Davis (1983) when van der 
Waals effects, retained by him, are neglected. 

4. Basic states 
Two sets of solutions to the governing system in $2 are of particular interest. One 

is spatially uniform and time-dependent. It describes an infinitely long flat layer that 
drains downward and disappears in a finite time. The second basic state is steady and 
develops in space. It describes a steady layer, which thins in the flow direction and 
terminates at a contact line. 

When a flat layer is placed on a plate and tilted, it flows downward along the plate. 
At the same time it thins owing to evaporation if the plate is heated and the liquid 
is volatile. The corresponding flow and temperature field can be obtained by solving 
the governing system in $2 with 3, = 0. The velocity component in the x-direction 
has a parabolic profile and that in the z-direction is zero. The temperature is unity 
on the heated plate and decreases to 

- q l + @ X P ( & J ]  h+K 

on the free surface. The layer thickness is independent of x, and can be obtained by 
solving the evolution equation (3.13) with 3, = 0: 

+-In - + - - 3KQ - ET EP K(2K2+6K+3) 3 P  Q Ka 
352 ( l + K  2 1+K Q 

h, = 52-K+€- 

where Q(T)  = ( (1  + K ) 2 - 2 ~ ~ ) t  and h, indicates a basic state. The free-surface 
configuration (4.1) does not depend on Reynolds number, and generalizes the state 
considered by Burelbach et al. (1988) for static evaporating layers to  second order. 
The layer thins uniformly and disappears at a finite time. When P =  0, the 
disappearance time is T = (1 + 2K)/(2E), and it decreases with P. When mass loss is 
absent (B = 0), equation (4.1) reduces to h, = 1, which is considered by Yih (1963), 
among others, for isothermal conditions and Kelly et al. (1986) for layers with 
thermocapillarity . 

The second basic state can be reached by feeding the flow at the upstream end at 
a given flow rate. The fluid then flows downstream with the total evaporative mass 
flux across the interface balancing the flow fed upstream. The free-surface 
configuration for this steady basic state can be obtained by solving the evolution 
equation (3.13) with 3, = 0 in a finite domain 0 < < a. Here, 6 = 0 is a fixed point 
on the incline (e.g. an exit of reservoir through which the fluid is fed), and E[ = a is 
the a priori unknown location of the contact line. 

5 FLM 230 



124 S. W. Joo, 8. H. Davis and S. G. Bankoff 

Both of these states are important to consider. In the present study, we consider 
only the spatially uniform basic state, and study its stability to long-wave 
disturbances. 

5. Linear stability analysis 
We first apply a linear stability analysis, consider a simple harmonic disturbance 

of small amplitude to  state (4.1), and write the solution of equation (3.13) as follows: 

h = h0(~)+6[H(~)eikf+c.c.] .  (5.1) 

Here 6 is the initial amplitude of the disturbance, H is the time-dependent normal- 
mode amplitude having H(0) = +, k is the scaled disturbance wavenumber, and C.C. 
denotes the complex conjugate. We substitute the above expression into (3.13) and 
linearize in 6 to obtain 

where 
fi /H = re&) + r(7) - ikc(T), (5.2) 

KM h, 2G2 G r = & z  - - +- h: sin2 /3- - hi cos /I- k2f7hi] (5.3) 
K(h, :K)s+P(h ,+K)  15 3 

is defined as an effective growth rate, 

is the linearized phase speed, and 

h2(h - 3K) 
E +€EP O O 

rev = (h,+K)2 3(h0+K)5 ' (5.5) 

The term rev is real, but does not affect the effective growth. It measures the initial 
disturbance amplitude relative to the decaying thickness of the basic state, and 
involves no instability. Upon integration of (5.2)) it gives an algebraic variationt in 
H. The phase speed c decreases with time as the layer thins, and so indicates that the 
wave propagation can be affected by evaporation. 

The effective growth rate r(7) shows the destabilizing effects of vapour recoil, 
thermocapillarity, and mean flow and the stabilizing effects of hydrostatic pressure 
and surface tension. In the presence of surface tension (8 8 0)) there is a cutoff 
wavenumber k, above which no instability is present ; k, is obtained by setting r = 
0 and depends parametrically on time. The maximum growth rate occurs at  k = 
k,/1/2. In the absence of mass loss (E  = 0)) the basic state has h, = 1, and the 
condition for instability is r> 0. When heat transfer and surface tension are 
neglected, i t  yields the instability condition 

GsinB > %cot/3, (5.6) 

obtained by Benjamin (1957) and Yih (1963). 
Figure 2 shows the effects of gravity, vapour recoil, and thermocapillarity on the 

stability of film flow when 8 = 0. The growth rate r is negative inside the space Zs 
bounded by the (G, E2/D)- and (G, KM/P)-planes and the neutral surface. Projection 

t A referee suggested an alternative to the removal of rev after the integration. For P = 0, say, 
if we define y = #(h+K)2 and write y = y0+S[Y(7)eikE+c.c.] in place of (5.1), then ayo/a7 = - E .  
This procedure removes rev in (5.2). 
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FIQURE 2. Stability diagram of a thin layer when S = 0. 

of the neutral surface onto the (E2/D,KM/P)-plane yields straight lines of equal 
slope; projection onto the (G, E2/D)-  and (G,KM/P)-planes yields parabolas of equal 
curvature. The critical Reynolds number is given by 

and the critical values for E2/D and KM/P are given by 

and (5.9) 

When we set E2/D = KM/P = 0 and move along the G-axis, the segment outside of 
Zs corresponds to surface-wave instability (see (5.6)). When we set 0 < E2/D < 
(E2/D),  with KM/P = 0, and move along a straight line parallel to the G-axis, there 
is a positive growth rate for small G, owing to evaporative instability, and then a 
negative value, owing to the stabilizing effect of hydrostatic pressure. However, at  
large enough G there is again growth, because of surface-wave instability. This same 
sequence of instability, stability, and then instability as G increases has been 
predicted by Kelly et al. (1986) for the case with only thermocapillary effects. As can 
be seen from (5.7)-(5.9), the space Zs expands with time as the layer gets thinner and 
thinner. Of the three critical values, G, increases most rapidly, while (K2M/P), 
changes slowest. Intuitively, this is obvious, because the thinner the layer the more 
viscous resistance there is to fluid flow. 

When surface tension is present, the stable region Zs increases in size as shown in 
figure 3. When G = 0, both E2/D and KM/P acquire upper bounds for instability ; the 
destabilizing effects of vapour recoil and thermocapillarity are now effective only for 
disturbances with sufficiently small wave number. The critical Reynolds number is 
also increased to 

(5.10) 

As the layer thins, the intersection between the neutral surface and the (E2/D,  
KM/P)-plane approaches the origin, so that surface tension becomes less effective. 

There are two distinct limits, in which the thermocapillary instability disappears. 
As mentioned above, the parameter K-' can be interpreted as the Biot number for 

5-2 
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E'lD 

K M I P  

F I D U R ~  3. Stability diagram of a thin layer. 

non-volatile layers. The contribution of the thermocapillarity to the effective growth 
rate r vanishes for either K-' +. 0 or K-' + co . When the heat transfer coefficient is 
small (K-'+O), the free surface behaves as a fixed-flux boundary (T, = 0 at z = h).  
The vertical temperature gradient in the layer then disappears, and the temperature 
is everywhere identical to that of the bottom plate. When the heat transfer 
coefficient is large (K' + a), the free surface is a perfect conductor (T = 0 a t  x = h).  
The temperature along the surface is then the constant ambient temperature. 

6. Nonlinear evolution of the infinite layer 
The linear analysis in $5 is valid as long as disturbance amplitudes stay small. In 

order to examine the nonlinear evolution of instabilities, we must solve (3.13). We 
pose an initial-value problem on a periodic domain and solve it using a Fourier- 
spectral method. 

The initial condition is taken to be a simple-harmonic disturbance superimposed 
on the flat interface, 

where S = 0.1. The solution is approximated by a finite Fourier series 
h(6,O) = 1-8 C O S ( ~ ~ ) ,  (6.1) 

N 
h(&7) = C a,e'"t+c.c. 

n--N 

with N 3 64. The computational domain is set to be the interval [0,2x/k]. In the 
cases shown below, we take E = 0.2 and S =  0.1. The time marching is done by a 
fourth-order Hamming modified predictor-corrector method with a maximum error 
bound of lo-". The fourth-order RungeKutta method is used for automatic 
adjustment of the initial increment and for the computation of starting values. A t  
each time step, the spectral coefficients are checked in order to monitor the spatial 
resolution. Aliasing errors are suppressed by taking a large number of collocation 
points and discarding the higher half of the Fourier modes. For evaporating layers, 
we stop the numerical integration as soon as the local minimum layer thickness 
becomes smaller than the maximum error bound lo-", and define the corresponding 
time as the rupture time T ~ .  

6.1. Isothermal layers (G, f l +  0 ; E = E 2 / D  = KLM/P = 0) 
We examine the evolution of surface waves on isothermal layers. The nonlinear 
evolution of isothermal layers has been studied analytically by Gjevik (1970), Lin 
(1974), Tougou (1981), and Chang (1989) among others. Gjevik (1970) and Tougou 
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FIGURE 4. Stability diagram of isothermal layers. 

(1981) considered waves with initial wavenumbers close to the cutoff wavenumber 
k = k,, and analysed subsequent evolutions by examining the fundamental mode 
and its lowest harmonics. (This is equivalent to setting N = 2 in (6.2).) Lin (1974) 
performed a weakly nonlinear analysis near the critical Reynolds number Gsinp = 
G, sin 8, and transformed the evolution equation (3.13) into a LandauStuart 
equation. He finds that there is a transition point k = k, that separates supercritical 
(k > k,) from subcritical (k < k,) bifurcation (see figure 4 and the discussion below). 
The weakly nonlinear analysis near criticality is generalized by Chang (1989), who 
obtained various solutions of finite-amplitude permanent waves. Some of the results 
of these authors relevant to our computations are illustrated in figure 4. 

In figure 4, the linear/nonlinear stability diagram is plotted on the (k, G)-plane. 
The bifurcation point G,, the upper neutral curve k = k,, the wavenumber k = k, for 
maximum liner growth rate, the curve k = ik,, and the lower neutral curve k = 0 are 
obtained from the linear theory. The flow is linearly unstable if G > G, and 0 < k < 
k,. However, when k > k,, capillarity weakens the growth, so that the secondary flow 
equilibrates; the bifurcating solution is supercritical. If k is sufficiently close to k,, 
the harmonics of the fundamental wavenumber are small, and the equilibrated state 
is a nearly sinusoidal permanent wave, which corresponds to the ‘periodic flow’ 
observed by Kapitza & Kapitza (1949). If k is near k,, a few lowest harmonics are 
excited due to the nonlinear interaction, and the equilibrated state thus resembles 
the ‘single wave’ observed by Kapitza & Kapitza (1949) and studied analytically 
and numerically by Pumir, Manneville & Pomeau (1983) in terms of solitary waves. 
When k c k,, the flow is linearly unstable and the nonlinearities augment the growth. 
Local to the bifurcation point the instability is subcritical. The harmonics excited lie 
in the linearly unstable regime and grow in a complicated manner owing to their 
nonlinear interactions. The critical wavenumber k, gives the transition point that 
separates the regimes of subcritical and supercritical instability. It coincides with ik, 
for E --f 0. The 0(e2) correction on k,, which depends on G, 8, and /3, is exaggerated in 
figure 4 for clarity. The value k, increases with G and decreases with Sand  #z -/3. An 
asymptotic value of k, from the weakly nonlinear theory can be obtained from the 
results of Gjevik (1970), Lin (1974), and Tougou (1981). 

We solve the evolution equation (3.13) for isothermal layers with G = 5 and p = 
45”, corresponding to point P1 in figure 3. In this case G, = 2.5 d 2 ,  k, x 2.21, and 
k, x 1.56. 

Figure 5 shows the surface-wave instability with the initial disturbance 
wavenumber k = 2.1, near the cutoff. In figure 5(a,  b) free-surface shapes are shown 
with each line representing a time increment of 0.05. For small time, the disturbance 
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FIQURE 5. Surface-wave instability for an isothermal layer with k = 2.1 (kM = 1.56), G = 5, B = 
45O, and 8 = 0.1 : (a)  free-surface Configurations for 0 < T < 0.75 with AT = 0.05; (b )  free-surface 
configurations for 14.5 < T < 15 with AT = 0.05; (c )  evolution of the spectral coefficients. 

grows, consistent with the linear theory, but soon reaches a maximum and then 
decays with the growth of its lowest harmonics (n = f 2). The harmonics distort the 
surface slightly from the initial sinusoidal shape, so that the front steepens and the 
rear is stretched. The harmonics generated have large decay rate according to the 
linear theory, and so decrease monotonically after the initial generation. The 
disturbance thus equilibrates, as shown in figure 5 ( b ) .  The magnitudes of the 
harmonics are small compared to the fundamental, so that the h a 1  state is almost 
sinusoidal as predicted by the weakly nonlinear analysis. In  figure 5 ( c )  the 
magnitudes of the fundamental and its first several harmonics are plotted against the 
time 7.  All the modes shown grow initially but soon decay monotonically and 
converge to constant values. Modes higher than n = f3 are very small. 

In figure 6, the initial disturbance wavenumber is k,. Figure 6(a-c) shows the 
evolution of free-surface shapes for initial growth, intermediate decay, and 
equilibration, respectively. Each line again represents a time increment of 0.05. The 
initial exponential growth is much more pronounced compared to the previous case, 
as can also be deduced from the linear theory. The decay rates of the harmonics 
generated are also smaller than the previous ones, so that the distortion of the surface 
shape is more significant, as seen in figure 6 ( b ) .  The permanent wave shown in figure 
6(c) has steeper fronts and longer rears with the presence of the dimples due to 
harmonics. The magnitude of each spectral coefficient in figure 6 ( d )  shows the 
equilibration of each mode as before, but the limiting values are now larger. 

If we take an initial disturbance wavenumber k smaller than k ,  but larger than k,, 
we may expect more significant contributions of the harmonics. In figure 7,  we show 
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FIGURE 7. Surface-wave instability for an isothermal layer with k = 1.3, G = 5, B = 45", and 8 = 
0.1 : (a) free-surface configurations for 29.85 < T < 29.95 with AT = 0.05; (b) evolution of the 
spectral coefficients. 

R 

a case with k = 1.3. The initial instability and the subsequent decay of the 
fundamental due to the growth of harmonics are qualitatively the same as in the 
previous cases. However, the convergence to the equilibrium state is not monotonic. 
The modes interact with each other and rearrange their magnitudes to form a finite- 
amplitude permanent wave as shown in figure 7 (b) : this resembles the 'single wave ' 
observed by Kapitza b Kapitza (1949) and computed by Pumir et al. (1983). The 
initial condition used by Pumir et al. (1983) is a localized disturbance, which has a 
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FIQURE 8. Surface-wave instability for an isothermal layer with k = 1.11,  G = 5, /3 = 4 5 O ,  and 
S = 0.1 : (a) free-surface configurations for 0 < T < 1.3 with AT = 0.05; ( b )  free-surface con- 
figurations for 1.35 < T < 2.5 with AT = 0.05 ; (c) free-surface configurations for 4.8 < T < 5.6 with 
AT = 0.05; ( d )  free-surface configurations for 9.5 < T < 10 with AT = 0.05; (e) free-surface con- 
figurations for 34.9 < T < 35 with AT = 0.05; (f) evolution of the spectral coefficients. 

continuous spectrum of wavenumbers at  r = 0. Here, we show that’ even if the initial 
state is a monochromatic wave, it can evolve into the ‘single wave’ through 
nonlinear modal interactions. Kapitza & Kapitza (1949) also observed the ‘single 
wave ’ by reducing the frequency of the periodic disturbance at  the leading edge. 

In figure 8, the initial wavenumber k = 1.11 is very close to gk, = 1.105. According 
to weakly nonlinear analysis, the flow should equilibrate. However, the computations 
show no equilibration within the validity of the long-wave approximation, since the 
higher harmonics are important away from the bifurcation point. Figure 8 (a-e) 
shows the free-surface shapes for time increments of 0.05, while figure 8 (f) shows the 



Long-wave instabilities of heated falling jilms 

0.05 

0.04 ~ 

la.] 0.03 

131 

n = f l  
(b)  

\. 
---_ --- ~ 

1.2 

h 1.0 

0.8 
-n 0 n 0 1 2 

K 5  7 

FIGURE 9. Gravitational instability for an isothermal layer with k = 0.1, G = 5,  B = 4 5 O ,  and S = 
0.1: (a) free-surface configurations with AT = 0.05 up to T = 2; (b)  evolution of the spectral 
coefficients. 

evolution of the first five spectral coefficients. Figure 8(a)  represents the initial 
instability. The rapid evolution and growth of the harmonics make the wave fronts 
steeper and create the dimples at a much earlier stage. The continuously growing 
harmonics, modes n = f2 in particular, receive energy from the fundamental. In 
figure 8(b)  and S(c), the initial wave amplitude decays after reaching a maximum, 
while the dimples grow significantly. In figure 8 (d ) the fundamental recaptures the 
energy and dominates, while the harmonics decay. Therefore, we observe that the 
initial crests grow while the dimples decay. This competition between the 
fundamental and the harmonics continues, so that the initial crests grow and then 
decay several more times. Eventually still higher harmonics contribute to the 
evolution, and so the ‘single wave’ in figure 8(e)  grows ‘explosively’. Clearly, our 
asymptotic representation breaks down here. For sufficiently large G, similar 
‘catastrophic’ behaviour has been observed by Pumir et al. (1983) using a localized 
initial disturbance. 

Figure 9 shows the surface-wave instability with k = 0.7, which is smaller than k,. 
The linear growth rate is identical to that in the case shown in figure 5. In figure 9 (a ) ,  
each line represents a time increment of 0.05, with the final time step 7 = 2. As time 
increases, the amplitude of the disturbance at first increases exponentially, as in the 
previous cases of k > k,, but soon grows super-exponentially ; even higher harmonics 
are excited in the initial instability stage. The local phme speed of the wave increases 
with the local layer thickness. Therefore, this super-exponential growth makes the 
crests travel significantly faster than the troughs, resulting in steepening of the front 
and incipient wavebreaking. 

In figures 5r9, differences in local growth rate are seen; the thinning at the trough 
is much slower than the growth at the crest. This can be understood by examining 
the vertical component (3.9) of the velocity at the free surface; the driving forces 
depend on powers of h and, hence, act more effectively on thicker regions. This 
phenomenon, that the positive deviation from the mean film thickness is more 
pronounced than the negative one, seems to be typical for gravity-driven viscous 
flows. Yiantsios & Higgins (1989) examined Rayleigh-Taylor instability in thin 
viscous films and saw a similar phenomenon. 

It is thus seen that the surface-wave instability causes a rapid growth of the crest, 
a steepening of the slope behind the trough. When the initial disturbance 
wavenumber is large (but small enough to cause the instability), the disturbance 
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equilibrates after initial growth and steepening. When the initial disturbance 
wavenumber is small, the evolution via (3.13) is highly unstable and the continuous 
growth of the crest and the steepening can lead to wavebreaking. The thinning of the 
trough is slow, and the wavebreaking is likely to occur before the trough thins 
significantly. Therefore, the surface-wave instability by itself does not easily initiate 
film rupture and dryout. 

6.2. Layers with thermocapillarity (G,S,  K,KM/P + 0 ; E  = E2/D = 0) 
We now examine the evolution of a non-volatile layer on a heated plate. The 
thermocapillarity described by (3.13) models the long-wave instability that occurs 
when the free surface is deformable. The effects of thermal convection are small, and 
the instability is induced by vertical temperature gradients in the layer and 
differences in the local layer thickness that generate temperature differences along 
the interface. 

There is another mode of instability that exists when thermal convection is 
significant. Pearson (1958) showed for S+ co (non-deformable surface) that the onset 
of this instability occurs when the wavelength is of order unity (compared to the 
layer depth). Goussis & Kelly (1990) allow surface deformation and find a sufficient 
condition that this unit-order wavenumber instability is absent. This criterion, valid 
for G P 1, states that all thermocapillary instabilities have small wavenumber if, in 
our notation, KM > 16.037. When G decreases, the allowable values forM increase, so 
that these instabilities are less likely. In the cases shown below, for which G = M = 
0(1) ,  as required by (3.13), we have K = 0.1, so that only the long-wave instability 
is present. 

Figures 10 and 11 show the unstable evolution of a thin layer in the absence of 
gravity (G = 0). It corresponds to the point P2 in figure 3 with KMIP = 1, K = 0.1 
and g= 0.1.  The cutoff wavenumber k, x 2.87, the maximizing wavenumber k, = 
2.03. Two different initial instabilities wavenumbers are chosen : k = 0.7 in figure 10 
and k = k, in figure 11. 

In figure lO(a), each line represents the free-surface configuration for r increments 
of0.5, and the last state shown is at  r = 15, in which there is a characteristic ‘two- 
finger ’ shape. In the initial stage, the disturbance grows exponentially, as predicted 
by linear theory. Energy is confined to the unstable fundamental mode, and thus the 
free surface keeps its simple harmonic configuration. As the amplitude grows, the free 
surface near the trough flattens due to the ‘thin-layer’ mentioned above. Since the 
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FIGURE 11. Free-surface evolution for a thermocapillarity instability in the absence of gravity. 
k = k,, KNIP = 1, K = 0.1, S = 0.1 : (a) free-surface configurations with AT = 0.5 up to T = 4.5; ( b )  
evolution of the spectral coefficients. 

two edges of the flattened region have large slope and positive curvature, they are 
rapidly drawn downwards by capillary pressures : the pressure in the liquid is lower 
near the edges than near the flattened region in the centre. This creates both a 
draining outward and a characteristic bulge in the centre. The destabilizing 
thermocapillary effect induces large velocities toward the plate, though a t  the centre 
the growth is almost zero ; the edges bulge downward, resulting in the growth of the 
new troughs. As this process develops, the fluid near the centre is trapped between 
the new troughs, since high-pressure regions are located on each side of them. The 
centre then moves upward in order to conserve mass, and acts as a new upward- 
growing crest. At this stage, the energy is no longer confined to the fundamental 
mode but has spread into its harmonics, as seen in figure 10 (b). The modes n = & 3 
have the largest growth rate according to the linear theory, and are the most 
pronounced among the harmonics. Unlike the surface-wave instability for isothermal 
layers, the fundamental mode continues to grow as the instability develops, and so 
is dominant through 7 = 15. Beyond 7 = 15, the long-wave assumption is violated as 
the higher harmonics become important. In contrast to the behaviour of isothermal 
layers, there is no substantial difference in local growth rates of the crests and the 
troughs until the secondary dimples appear. As can be seen from (3.9), the growth 
driven by thermocapillarity alone is not as sensitive to the local thickness of the layer 
as is the surface-wave mode. In fact, the thinning rate at the trough is slightly larger 
than the growth rate at the crest, because the thickness-dependent stabilizing effect 
of mean surface tensions acts more strongly on the crests. 

If we take larger values for the initial disturbance wavenumber k, the linear 
growth rate of the fundamental mode relative to its harmonics increases. In 
nonlinear evolution, the flattening of the trough and the ‘fingering ’ are delayed until 
the trough thins further. In figure 1 1 ,  we take k = EM. As shown in the free-surface 
configuration for each 7 increment of 0.1 in figure 1 1  (a), the ‘fingering ’ does not occur 
until the trough thins to below approximately 20% of its initial thickness. Further 
computations, not given here, show that the flattening of the trough occurs at about 
7 = 4.6 and the ‘fingering’ develops subsequently. For times larger than 7 = 4.5, 
however, the Fourier spectrum broadens to include modes outside the long-wave 
theory. In figure l l ( b ) ,  the magnitudes of the five lowest modes are plotted up to 
T = 4.5. The fundamental mode (n = & 1 )  corresponds to the linear maximum growth 
rate, and grows more rapidly than its harmonics. The harmonics eventually become 
important, and the ‘fingering’ would occur before the layer ruptures. 
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FIGURE 13. Evolution of the free-surface configuration when k = 0.7 (k, = 1.04), G = 5, /I = 30°, 
h Z / P  = 1, K = 0 .1 ,8=  0.1: (a) 0 < 7 < 2.9 with A7 = 0.1; ( b )  3.5 < 7 d 6.5withA.7 = 0.1; (c) T = 
50, 75, and 100; ( d )  evolution of the spectral coefficients. 

Figure 12 shows the same layer as in figure 10, but with gravity-induced mean flow 
and hydrostatic pressure gradient, G = 5 and p = 15". This case corresponds to P3 in 
figure 3, which lies in the stable region Zs, where the thermocapillary instability is 
suppressed by hydrostatic pressure. The time increment for each configuration 
shown is 0.5, and the last configuration is at r = 6. The evolution shows monotonic 
decay of the disturbance. The local decay rates at  crests and troughs look almost the 
same. However, the local phase velocity is higher at the crest than at  the trough, 
owing to the viscous shear caused by the bottom. Consequently, the free-surface 
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configuration changes from its initial harmonic shape ; the region behind the crest 
becomes flatter, while the region behind the trough barely changes shape. 

If we now increase the angle of inclination to 30°, corresponding to P4 in figure 3, 
the flow becomes linearly unstable since the hydrostatic pressure is decreased. The 
corresponding isothermal film is stable, but thermocapillarity creates instability. 
Surface shapes for this case are shown in figure 13 for several different ranges of time 
and compare with those in figure 10. The wavenumber remains k = 0.7, and k, = 
1.04. Figure 13(a) shows the evolution for 0 < T < 2.9 with AT = 0.1. The unstable 
fundamental mode grows with time, so that the disturbance amplitude increases, in 
agreement with the linear theory. As the instability develops, however, the 
fundamental mode starts to lose its energy, as shown in figure 13(b) (3.5 < T < 6.5). 
It appears that the disturbance tends toward a permanent wave rather than 
wavebreaking or fingering, as is seen in figure 13(c). The evolution of spectral 
coefficients shown in figure 13(d) indicates that the modes n = + 2  eventually 
dominate. Therefore, the equilibrated state would have a dominant wavenumber 
twice that of the initial state, as shown in figure 13(c). 

In figure 14, the angle of inclination is further increased to 45’. This corresponds 
to P5 in figure 3 ; separately, there is the surface-wave instability shown in figures 5-9 
and the thermocapillary instability of figure 10. Each instability is amplified by the 
interaction with the other. Here, k = 0.7 as in figure 9, while k, = 2.56 and k, = 3.63. 
As the wave travels down the plate, a surface-wave instability evolves similar to that 
of the isothermal film. The growth rate is higher, so that dimples appear earlier. Once 
the dimple appears, the thermocapillary effect acts strongly upon it and enhances the 
secondary developments, which in turn rapidly steepens the wave and (presumably) 
causes wavebreaking at  an earlier time. As seen in figure 14(b), the harmonics grow 
more rapidly than those in figure 9(b) due to the thermocapillarity. 

For isothermal layers, as k is increased the nonlinear interactions become weaker, 
and the secondary flow eventually equilibrates for sufficiently large k. When 
thermocapillarity is present, however, the thermocapillary instability can prevent 
the equilibration. An example is shown in figure 15, where k = 1.56 as in figure 6. 
Initially, the surface-wave instability is dominant, so that the evolution is similar to 
that of the isothermal layer. Soon the thermocapillary instability becomes effective, 
and enhances the growth of the disturbance. Instead of the equilibration, the 
evolution in figure 15(b) shows ‘catastrophic’ growth as in figure 8(e). The spectral 
coefficients plotted in figure 15(c) clearly show that equilibration does not occur. 



136 S. W .  Joo, S. H. Davis and 8. G. Bankoff 

1.6 

1.4 

1.2 

h 1.0 

0.8 

0.6 
Flow 

0.4 + ---- 
0 -x --x 0 

K 5  

0.6 I 
--x I[ 

0.08 

la.l 0.06 

0 0.5 1.0 1.5 
7 

FIGURE 15. Evolutions with surface-wave and thermocapillary instability. G = 5, /3 = 4 5 O ,  
KW/P = 1 ,  K = 0.1, 8 = 0.1, and k = 1.56: (a )  free-surface configurations for 0 < 7 < 0.95 with 
A7 = 0.05 ; ( b )  free-surface configurations for 1 < 7 < 1.5 with A7 = 0.05 ; (c) evolution of the spectral 
coefficients. 

Other computations near k = k, also show no equilibration. The surface configur- 
ations are closer to the monochromatic wave, but the continuous growth of the 
fundamental induces ' catastrophic ' behaviour. 

In figure 16, a stronger thermocapillary effect is considered (KMIP = 5 ) ,  one which 
can overcome the stabilizing hydrostatic pressure even when the plate is horizontal 
(G = 5,  /3 = 0"). Unstable evolutions are shown for several different angles of 
inclination with AT = 0.05 and k = 0.7. Figure 16(a) shows the evolution of the 
instability on a horizontal plate. As in figure 10, the disturbance amplitude grows 
and then secondary instability starts. The growth at the crest, however, is 
distinctively slower than that at the trough, in contrast to the case with the 
hydrostatic pressure absent. In figure 16(b) the plate is tilted to /3 = lo", and so the 
liquid is flowing. Again, the crest is moving faster than the trough, steepening the 
slope behind the trough. Therefore, when the trough flattens and the edges bulge 
outwards, the rear edge has the larger curvature. It then grows down faster than the 
other due to thermocapillarity. The secondary 'finger ', is not swept downstream 
substantially by the flow but grows vertically downward. In figures 16 (c) and 16 (d  ) 
the angle of inclination is set a t  20" and 30", respectively. As the angle increases, the 
effect of mean flow becomes more pronounced and the thermocapillary instability 
accordingly is enhanced. The steepening and the fingering tend to develop at  earlier 
times. When /3 = 45", the surface-wave instability is present. The two instability 
modes reinforce each other. In figure 16(d), the surface-wave mode is apparent first, 
so that significant steepening and secondary structures are seen before the fingering. 
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FIGURE 16. Evolution of the free-surface configuration when k = 0.7, G = 5, KM/P = 5, K = 0.1, 
S= 0.1 with AT = 0.05: (a) /3 = 0" (k, = 3.51); ( b )  b= loo (k, = 3.6); (c) /3 = 20" (k, = 3.84); 
( d )  /3 = 30" (k, = 4.2); (e) /3 = 40" (k, = 4.6). 

Since the thermocapillarity is strong, no equilibration of the secondary flow (by 
taking k near k,) is observed. In contrast to the evolution of the static layer, the 
growth of the crest is more pronounced owing to the mean flow. 

One of the notable differences between the thermocapillary and surface-wave 
instabilities is the local growth rate of the trough as compared with that of the crest. 
The growth driven by surface-wave instability is more sensitive to the local layer 
thickness. For pure thermocapillary instability, however, the growth at the trough 
is comparable to that at  the crest, so that it can cause significant local thinning of 
the layer. 
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FIQURE 17. Free-surface profiles for an evaporating layer shown with AT = 0.05 and at 
~,=4.9388. k = 0 . 7 ,  G=O,E=0.1, K=O.l ,  P =  1 ,  andS=0 .1  

6.3. Evaporating layers (G, s, E, K ,  E2 /D,  k X / P  + 0)  

When there is evaporation, the basic-state layer thins and disappears at a finite time 
T ~ .  When a disturbance is present, the trough will touch the heated plate before the 
basic state had disappeared. The effects of thermocapillarity and vapour recoil on the 
rupture instability have been discussed in detail by Burelbach et al. (1988). In this 
section we remark on this case but focus on the effects of gravity-driven flow and 
hydrostatic pressure. 

Figure 17 shows a typical free-surface evolution for a purely evaporating film with 
surface tension (E = 0 . 1 , s  = 0.1, P = 1, G = 0, and k = 0.7). The surface profiles are 
shown for AT = 0.05 and at  the rupture time T~ = 4.9388. As seen in (3.12), the mass 
flux is smaller the larger the local thickness of the layer. Therefore, the liquid at  the 
trough evaporates faster than the liquid elsewhere, which yields the configurations 
shown. 

When vapour recoil is present, the film becomes unstable, as shown by the linear 
theory. The amplitude of the disturbance grows as the layer evaporates, resulting in 
a decrease in rupture time. The degree of decrease and the surface profiles depend on 
the relative timescales of the mass loss and the instability. When E % E2/D,  the 
vapour recoil is weak, so that the decrease in rupture time is very small, and the 
surface profiles will be similar to those in figure 17. However, when E + E2/D,  the 
vapour recoil is substantial, the rupture time is substantially decreased, and the 
surface profiles will have sharper troughs, and possibly more elevated crests. 
Burelbach et al. (1988) show the profiles for various choices of the parameters. In 
figure 18, the surface profiles with AT = 0.05 and the corresponding evolution of a few 
lowest spectral coefficients are shown when E = 0.1, K = 0.1, E 2 / D  = 2, s = 0.1, and 
G = 0. Three different initial wavenumbers, k = 0.5, 0.7, and 1.0 (kM = 2.74), are 
taken to show three distinct evolutions. Of the three, the linear growth rate is the 
smallest for k = 0.5 and the largest for k = 1.0. In figure 18(a, b )  (k = 0.5) the 
contribution to the thinning of the trough from the instability is small, so that the 
surface configurations are similar to those in figure 17. However, the thinning rate 
near the trough is increased while that near the crest is decreased due to the 
evaporative instability. The rupture time thus is decreased to T~ = 4.6425. If k is 
increased to 0.7,  the effective linear growth is larger. The contribution of the 
instability accordingly is increased, resulting in much more pronounced local 
depression at the trough near rupture, as seen in figure 18(c). The growth of the 
fundamental mode (n = & 1) in figure 1 8 ( d )  is faster than that in figure l8(b). If we 
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FIGURE 18. Evaporating layers in the presence of vapour recoil. E = 0.1, K = 0.1, s = 0.1, P = 1 ,  
and E 2 / D  = 2 (k, = 2.74) : (a) free-surface profiles for k = 0.5 with A7 = 0.05 and at rB = 4.6425 ; 
( b )  evolution of spectral coefficients for k = 0.5; (c) free-surface profiles for k = 0.7 with A7 = 0.05 
and at 7R = 4.3475; ( d )  evolution of spectral coefficients for k = 0 .7 ;  (e) free-surface profiles for 
k = 1.0 with A7 = 0.05 up to 7 = 3.15; (f) evolution of spectral coefficients for k = 1.0. 

further increase k toward k,, the contribution of the instability to the local thinning 
of the layer increases. If k exceeds a certain critical value and the local thinning near 
the trough becomes sufficiently rapid, the liquid has to flow away from the trough in 
addition to evaporating. Therefore, the flattening of the trough and the fingering 
would occur before the layer ruptures. One such case is shown in figure 18 ( e ,  f) with 
k = 1 .O. The evolution is shown up to 7 = 3.15, beyond which the local surface slope 
near the fingers becomes too large to be described by the long-wave theory. It 
appears that as the instability develops further, the finger tips would be drawn to the 
plate and so a two-point rupture is expected. 
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FIGURE 20. An evaporating layer with thermocapillarity. k = 0.5 (k, = 2.03), E = 0.1, K = 0.1, 
8 = 0.1, P = 1 ,  and KMIP = 2. Free-surface profiles are shown with Ar = 0.05 and at T~ = 4.5894. 

In figure 19, the local thicknesses of the layer a t  the crest and the trough are 
plotted against time until the layer ruptures. Several values for E 2 / D  are considered 
between 0 and 1.5, while E = 0.1, K = 0.1, P = 0 and 8 = 0.1 as in figure 17. For all 
cases, the thinning rate of the trough is larger than that of the crest. As the effect of 
vapour recoil increases, the thinning rate of the trough increases and that of the crest 
decreases. In  the range of the parameters taken, the rupture time decreases linearly 
with E2/D.  

The thermocapillary instability for this evaporating layer can have interesting 
effects on rupture. Primarily, this instability accelcrates the rupture, and thus the 
rupture time will decrease with h 2 f / P ,  as for the evaporative instability. When the 
fingering occurs before the layer ruptures, the location of rupture may be changed as 
in figure 18(e). This two-point rupture will occur when K M I P  is sufficiently large 
compared to E ,  and k is sufficiently closc to k, to provide rapid growth of the initial 
disturbance. I n  figure 20, k = 0.5 (kM = 2.03), E = 0.1, K = 0.1, and KMIP = 2. 
Surface profiles are shown at  AT = 0.05 and a t  rupture, rR = 4.5894. As the layer 
thins, the trough flattens and touches the plate. When k is somewhat smaller than 
0.5, the surface profiles are closer to those in figure 17 with slightly larger T ~ .  On the 
other hand, if k is somewhat larger than 0.5, the two-point rupture is observed. 

Figure 21 shows the evolution of the evaporating film of figure 17 with mean-flow 
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FIGURE 21. Evaporating layers with gravitational effects. k = 0.7, E = 0.1, K = 0.1, P = 1, 8 = 
0.1, and G = 5. Free-surface profiles are shown with AT = 0.05: (a )  p = 0" and T~ = 5.1769; (b) 
p =  15" and T,  = 5.1525; (c) /J' = 30" and 7, = 5.0687; ( d )  p = 45" and T = 4.3. 

effects added. Here k = 0.7, G = 5, and the angle of inclination is varied from zero to 
45". Surface profiles are shown at AT = 0.05 and at  T ~ .  When the plate is horizontal, 
the hydrostatic pressure stabilizes the flow and tends to flatten the film. Therefore, 
rR is increased to 5.1769, and the difference in local thickness a t  the crest and the 
trough is much smaller than that in figures 17 and 18. 

When the plate is tilted to 15O, the disturbance wave travels down the slope, and 
thus the location of rupture is shifted downstream. Without the evaporation, the 
flow would be stable and so the surface would tend to h = 1. However, because of 
evaporation, the trough is drawn to the plate faster than the crest. This amplification 
of the local-thickness difference causes a difference in local phase speed, so that the 
crest travels faster than the trough. Therefore, near rupture the surface behind the 
trough is steepened considerably. The rupture time rE = 5.1525 is again larger than 
that in figure 17, but has been slightly decreased from that in figure 21 (a) because 
the hydrostatic forces have been decreased by the tilting. 

The steepening of the surface and the decrease in rupture time due to tilting are 
more clearly seen in figure 21(c), where the angle of inclination is 30'. Without 
evaporation, the flow would be stable. The rupture time is reduced to rR = 5.0687, 
and the difference in the local phase speeds is much larger. Accordingly, near rupture 
the surface behind the trough becomes very steep, and that behind the crest is 
stretched. After the rupture, i t  can be expected that the liquid layer behind the 
rupture point rolls over before a dry region could expand significantly. Under certain 
conditions, re-wetting may be followed by a second rupture, a second re-wetting, and 
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FIGURE 22. Evaporating layers with surface-wave instability. k = 2.1, E = 0.1, K = 0.1, P = 1, 
# = 0.1, and G = 5. Free-surface profiles are shown with A7 = 0.05: (a) for 0 < 7 < 0.6; (b) for 
0.65 6 7 < 1.2; (c) for 1.25 < 7 6 5.673; ( d )  evolution of the spectral coefficients. 

so on. Therefore, when a layer falls down an inclined plate a number of rupture/re- 
wetting processes may be possible before it evaporates completely. 

Figure 21(d)  corresponds to a case in which the surface-wave instability causes 
wavebreaking before the layer ruptures. The angle of inclination is 45", and the 
surface profiles are shown up to T = 4.3, beyond which the surface behind the trough 
steepens rapidly and the evolution equation (3.13) loses validity. The corresponding 
isothermal instability is shown in figure 9, which indicates wavebreaking a t  a much 
earlier time. The wave propagation is retarded owing to evaporation. As the 
instability grows, the surface behind the crest is stretched and becomes almost flat. 

If we consider the same layer as in figure 21(d) but change the wavenumber k, 
different behaviour will be obtained, because the corresponding isothermal layer is 
very sensitive to k, as shown in figures 5-9. When k is sufficiently large, the 
wavebreaking is not likely to occur before rupture. I n  figure 22 one such example is 
shown for k = 2.1 (k, x 2.21). The surface profiles for different time ranges with 
AT = 0.05 are shown separately in figures 22(a) -22(c)  for clarity. The spectral 
coefficients are plotted in figure 2 2 ( d )  for comparison with figure 5 ( c ) .  After the 
initial surface-wave instability the harmonics decay as for the isothermal layers, but 
the equilibration is prevented by the evaporation. 

As seen in figure 21, a significant effect of the mean flow on evaporating layers is 
the creation of wavebreaking. When the surface-wave instability is present with 
small enough k, the incipient wavebreaking occurs before the trough touches the 
plate, resulting in a significant delay in rupture time. When k is close to k,, as in 
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figure 22, the wavebreaking does not occur. However, substantial steepening can 
occur, in contrast to the corresponding evolution without the mean flow. This 
steepening is observed also for layers without the surface-wave instability (figure 
21 b, c). When the layer ruptures with significant steepening, the fluid behind may 
break over the dry spot and the rupturelre-wetting processes may occur and even be 
repeated. The surface-wave instability may accelerate the rupture, but in most cases 
the instability does not accompany significant depression of the trough before the 
wavebreaking, as shown and discussed in figure 9. 

7. Discussion and conclusions 
The present work examines falling films of liquid on heated inclined planes. It 

includes viscous, pressure, gravity, capillary, and thermocapillary forces. If the 
liquid is volatile, it allows for the mass loss and vapour recoil of thermal evaporation. 
The long-wave evolution equation for the interface shape, which is derived for two- 
dimensional disturbances, is asymptotically equivalent to the original free-boundary 
problem. This extends the equation of Burelbach et al. (1988) to unit-order P and M ,  
retains O(B)  corrections, and generalizes this to gravity-driven layers. 

The evolution equation possesses two simple solutions. (i) There is a time- 
dependent spatially uniform layer that corresponds to an infinite layer that thins due 
to evaporation. (ii) There is also a steady-state spatially tapering layer that is 
finite; it begins at  x = 0, thins in the flow direction, and terminates a t  a contact 
line. The mass flow at the entrance is balanced by the evaporative flux through the 
interface. Both of these are physically realizable states but only the stability of the 
former state, spatially uniform and thinning, is treated herein. 

The isothermal layer is susceptible to surface-wave instabilities. Linear theory 
supplies the critical Reynolds number and corresponding phase speed. The phase 
speed depends directly on the square of the local layer thickness and so there is a 
built-in tendency for wavebreaking as is seen in the nonlinear analysis. The nonlinear 
behaviour of the layer is very sensitive to the initial disturbance wavenumber. When 
the disturbance wavenumber is sufficiently small, numerical solution of the evolution 
equation shows that the wave initially grows a t  the exponential rate of linear theory, 
but soon grows super-exponentially. The peaks grow much faster than the troughs 
deepen, and the front of the peaks steepens towards the vertical, showing incipient 
breaking, and a secondary trough grows behind the peak. The wave breaks faster 
than the trough depresses, so that here dryout is not likely to occur. Quantitative 
analysis of the wavebreaking is beyond the scope of the present work, because the 
evolution loses its validity as the maximum local slope of the free surface exceeds 
O(l / s ) .  When the disturbance wavenumber is closer to the cutoff value E,, the flow 
becomes supercritically equilibrated after the initial instability. The surface wave 
then approaches a permanent form, as observed in experiments. Different initial 
states give different equilibrium states. 

The non-isothermal layer of non-volatile liquid is susceptible to thermocapillary 
instabilities. Linear theory supplies the critical Marangoni number, as shown in 
figures 2 and 3. When the plate is horizontal, thermocapillary and hydrostatic effects 
compete. When the plate is tilted, there is a mean flow that produces surface waves. 
When the effective Marangoni number A? is large enough (see figure 3), changes in 
G can either stabilize or destabilize the basic state. This state is stable at point P3 
of figure 3. If G is increased to P4, surface waves, as modified by thermocapillarity, 
will grow. If CT is at P3 and lowered to P2, thermocapillary instability will be present. 
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As G is increased from P2, gravity effects will be introduced and finally, as G 
increases towards P3, the hydrostatic pressure will stabilize the layer, as we have 
seen earlier. The existence of this window of stability for falling films with 
thermocapillarity was first noticed and discussed by Kelly et ul. (1986). The phase 
speed is not affected by thermocapillarity. In contrast to isothermal layers, the local 
growth rate a t  the trough driven by thermocapillarity is comparable to that at the 
crest, so that significant local thinning of the layer can be expected. In  the initial 
stage, the disturbance grows exponentially, as predicted by linear theory. As the 
amplitude grows, the trough tends to flatten, owing to capillary pressure. 
Thermocapillarity then acts strongly on the edges of t,he flattened region, so that the 
edges bulge downward, resulting in the growth of new troughs. The flat region in the 
centre stops growing and then moves upward in order to conserve mass. When the 
disturbance wavenumber k is small, this ‘fingering’ occurs a t  an early stage, but as 
k increases it is delayed until the trough thins significantly. For horizontal layers, the 
development of the fingers is symmetric. 

For layers on a tilted plate, the effects of mean flow are present. When there is no 
surface-wave instability and the thermocapillarity is weak, the flow equilibrates 
after initial instability. When the thermocapillarity is strong enough, the disturbance 
grows continuously and the layer tends to rupture. When the fingering occurs, the 
upstream finger maintains the larger curvature due to the steepening of the front, 
and thus grows downwards faster. When the surface-wave instability is present, the 
thermocapillarity enhances the instability and promotes the wavebreaking. The 
equilibration seen for isothermal layers does not occur when both instabilities are 
present. 

The non-isothermal laycr of volatile liquid is susceptible to vapour recoil, 
thermocapillary , and wavebreaking instabilities. Linear theory supplies the critical 
value of E2/D,  as shown in figures 2 and 3. As in the case of the non-volatile liquid, 
there is a window of stability above which and below which the basic state is 
unstable. When vapour recoil or thermocapillarity is present, the instability can be 
accompanied by significant local thinning of the layer, resulting in a decrease in 
rupture time. 

When the mean flow is present, the interface steepens. If significant steepening 
occurs before rupture, wavebreaking may follow the rupture. When surface-wave 
instability is present and the disturbance wavenumber is small enough, wavebreaking 
will occur before rupture. Therefore, the mean flow can either retard the rupture or 
cause the rewetting of the dry region. 

If the trough of a disturbed layer becomes as thin as 1000 8, van der Waals 
attractions may drive the region to  rupture (see Ruckenstein & Jain 1974; Williams 
&, Davis 1982 ; Burelbach et al. 1988). For simplicity, such forces have been omitted 
in the present analysis, but can easily be incorporated, as seen in (7.1) below. Clearly, 
the dryout criteria derived in this paper would be modified by the presence of van 
der Waals attractions. 

One of the functions of long-wave theory for thin films is to unify, here in a single 
evolution equation, the effects of several instabilities and their couplings. Not only 
does it give quantitative predictions as discussed abovc but it also helps identify new 
phenomena even in cases where the solutions break down after a finite time. We have 
seen here the existence of a window of instability, the presence of incipient 
wavebreaking and permanent waves, the ‘ two-finger ’ thinning process, the 
promotion of breaking by heat transfer, the possible bypassing of dryout by flow of 
breaking waves ‘filling in’ the depressions, the promotion of dryout by flow when 
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simultaneous instabilities are present, and the destruction of permanent waves by 
mass loss. The theory identifies parameter value where one or another coupling can 
occur. 

Many of thc competitions studied here arc in principle sensitive to the fact that we 
have allowed only two-dimensional instabilities. Some of the flow structures may be 
modified in three dimensions since there can be flow around them. Thus, steepening 
of waves may be weakened and dry patches may become independent of streamwise 
direction. Clearly, three-dimensional effects are of great importance and are the 
subject of subsequent studies. The extended evolution equation can be written down 
directly as shown below. 

We now allow three-dimensional disturbances and include long-range molecular 
forces, with the y-coordinate directed cross-stream, and with A as a measure of the 
van der Waals attractions, as detailed by Burelbach et al. (1988). A straightforward 
extension of (3.13) gives 
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Here V is the gradient operator (a,, a,,), where 7 = ey. Then, the effective growth rate 
P3=) from linear theory becomes 

2G2 
15 

+ sk2 cos2 8 - h: sin2 /3- ESh: k4, (7.2) 

where k is now the magnitude of the wavenumber vector k = ( k  cos 8, k sin 8) on the 
(E,q)-plane. It can be easily shown from the above relationship that for a given k two- 
dimensional disturbances along the incline (8 = 0) are more unstable in the linear 
theory than are oblique disturbances ; this is a generalization of Squire's theorem. 
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